Răspuns :
E(x)=(x²+4x+3)(x²+3x+2)(x²+5x+6)‐¹
a) x²+4x+3=(x+1)(x+3)
x²+4x+3=x²+3x+x+3
x²+4x+3=x²+4x+3 (A)
b) (x+1)(x+2)=x²+2x+x+2=x²+3x+2
(x+2)(x+3)=(x²+3x+2x+6=x²+5x+6
E(x)=(x+1)(x+3)(x+1)(x+2)/(x+2)(x+3)=(x+1)²=x²+2x+1
CE: (x+2)diferit0=> x diferit -2 }
(x+3)diferit0=> x diferit -3 } C.E pentru numitor
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile oferite v-au fost utile. Dacă aveți întrebări sau aveți nevoie de sprijin suplimentar, vă încurajăm să ne contactați. Revenirea dumneavoastră ne bucură, iar dacă v-a plăcut, nu uitați să adăugați site-ul nostru la favorite!