Răspuns :
Răspuns:
[tex]\bf A=3+3^2 +3^2 + ... + 3^{2015} + 3^{2016}[/tex]
[tex]A=3^{1}\cdot\big(3^{1-1}+3^{2-1} +3^{3-1} +3^{4-1}\big)+ ... + 3^{2013}\cdot\big(3^{2013-2013}+3^{2014-2013} +3^{2015-2013} +3^{2016-2013}\big)[/tex]
[tex]A=3^{1}\cdot\big(3^{0}+3^{1} +3^{2} +3^{3}\big)+ ... + 3^{2013}\cdot\big(3^{0}+3^{1} +3^{2} +3^{3}\big)[/tex]
[tex]A=3^{1}\cdot\big(1+3 +9 +27\big)+ ... + 3^{2013}\cdot\big(1+3 +9 +27\big)[/tex]
[tex]A=3^{1}\cdot40+3^{5}\cdot40+3^{9}\cdot40+ .... + 3^{2013}\cdot40[/tex]
[tex]A=40 \cdot\big(3^{1}+3^{5}+3^{9}+ .... + 3^{2013}\big)[/tex]
[tex]\red{\boxed{A=4\cdot 10 \cdot\big(3^{1}+3^{5}+3^{9}+ .... + 3^{2013}\big)~~\vdots~~4~}}[/tex]
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile oferite v-au fost utile. Dacă aveți întrebări sau aveți nevoie de sprijin suplimentar, vă încurajăm să ne contactați. Revenirea dumneavoastră ne bucură, iar dacă v-a plăcut, nu uitați să adăugați site-ul nostru la favorite!